Master-Key Cryptosystems

Matt Blaze
AT&T Bell Labs

mab@research.att.com

We initiate the study of a new class of secret-key
cryptosystems, called master-key cryptosystems (MKCSs),
in which an authorized third party (hereinafter called “the
government,” although it need not literally be one) possesses
a “master key” that allows efficient recovery of the cleartext
without knowledge of the session key. Otherwise, an MKCS
appears and is used by ordinary users (i.e., all users except
the government) exactly as any secret-key cryptosystem is
used. In particular, pairs of ordinary users must agree on
a shared key before they can communicate. MKCSs should
be secure against ordinary attacks; knowledge of only the
algorithm, without either the session key or the master key,
should not allow recovery of cleartext. (Ciphers that are
merely weak, however obscure the attack, do not meet this
last requirement.)

One reason for the study of MKCSs is that they could
provide a less cumbersome alternative to key escrow when
third-party access is required, since the “escrow” occurs au-
tomatically when the cryptosystem is designed. Another
stems from the argument we present below that efficient
MKCSs are roughly equivalent to public-key cryptosystems
(PKCSs) in which encryption is very fast and key-generation
is slow. Every time the government puts forth an “official”
secret-key cryptosystem, there is speculation that the system
contains a secret “back door” that allows it to read all cipher-
texts, i.e., that the system is in fact an MKCS. The rough
equivalence we present makes this speculation less credible:
Designing an MKCS with acceptable performance is tanta-
mount to designing a new PKCS in which encryption is faster
than is possible with currently known systems.

In an MKCS, there is a “set-up” or “generation” al-
gorithm G. The input to G is a sequence of random bits,
and the outputs are a master key K,, and a secret-key cryp-
tosystem (E, D). The system (E, D) works exactly as any
secret-key cryptosystem, except that the government can de-
crypt all ciphertexts by using K,,.

We now show a rough equivalence between master-key
cryptosystems and public-key cryptosystems. First assume
the existence of an MKCS. The generator G can be used as
the key-generation algorithm in a PKCS. Every user A of the
PKCS is assigned an instance (K, (E, D)) of the MKCS.
K,, is A’s private key; F is A’s public key. If B wants to
send z to A, he generates a random session key k and sends
y = E(z, k); by definition, A can decrypt y with K,,.

Next assume the existence of a PKCS. We give two con-
structions for MKCSs in which the government can recover
the session key given the master key and a single block of
known plaintext.

Joan Feigenbaum
AT&T Bell Labs

jf@research.att.com

F. T. Leighton
MIT Math Dept
ftlOmath.mit.edu

Our first construction is a master-key stream-cipher.
Let MP and M S be the government’s (public-key, private-
key) pair. Users A and B create a session key k and then
use the encryption (with the government’s public-key M P)
of the session key and a counter as a key-stream generator:
Enp({k, 1)), Enap((k,2)), Enp((k,3)),.... The government
can use one block of known plaintext to recover one block
of key-stream, which it can decrypt with M S to get k and
generate the rest of the key-stream with M P.

Our second, more general construction yields a master-
key block cipher (which could then be converted to a stream-
cipher via one of the usual block-chaining methods). We use
the public-key encryption algorithm as a keyed hash func-
tion in a variation on the 3-round Luby-Rackoff block ci-
pher construction. (This simplest version of the cipher is se-
cure against known plaintext attacks but, like many similar
constructions, is vulnerable to a number of well known cho-
sen plaintext/ciphertext attacks. The simple version serves
our purpose of establishing an inherent connection between
MKCSs and PCKSs. More secure (and more complicated)
versions of the cipher are obtainable but not necessary for
this purpose.) Blocks of text are divided into left (L) and
right (R) halves. In the encryption algorithm below, H is the
hash function that is invertible by the government (using its
private key), k is the session key, and @ is exclusive-or.

R = ReH(L)
I = LoH(ROk)
R = RoHIL®E)

The decryption function follows directly and is omitted.

Given one plaintext block (Lpigin, Rpiain), the corre-
sponding ciphertext block (Lcipher, Reipher), and the ability
to invert H, the government can find

k= H_l(Rcipher @ H(Lpla.in) @ Rpla.in) © Lcipher

This “rough equivalence” implies that designing a prac-
tical MKCS entails designing a PKCS in which encryption is
very fast. (G might be relatively slow, however, which could
mean that one needs the resources of a government to gen-
erate an instance of an MKCS. Note that key-generation is
indeed slower than encryption in some existing PKCSs, e.g.,
RSA). Fast encryption might be achieved via short block-
length. Is there a (fast and secure) PKCS with short blocks?

September 7, 1995

