Key Escrow from a Safe Distance

Looking Back at the Clipper Chip

Matt Blaze
University of Pennsylvania

blaze@cis.upenn.edu

ABSTRACT

In 1993, the US Government proposed a novel (and highly
controversial) approach to cryptography, called key escrow.
Key escrow cryptosystems used standard symmetric- and
public- key ciphers, key management techniques and pro-
tocols, but with one added feature: a copy of the current
session key, itself encrypted with a key known to the gov-
ernment, was sent at the beginning of every encrypted com-
munication stream. In this way, if a government wiretapper
encountered ciphertext produced under a key escrowed cryp-
tosystem, recovering the plaintext would be a simple matter
of decrypting the session key with the government’s key, re-
gardless of the strength of the underlying cipher algorithms.
Key escrow was intended to strike a “balance” between the
needs for effective communications security against bad guys
on the one hand and the occasional need for the good guys
to be able to recover meaningful content from (presumably)
legally-authorized wiretaps.
It didn’t quite work out that way.

1. CARROTS, STICKS & ENCRYPTION

The 1990’s were interesting times for cryptography. The
civilian academic and commercial worlds were becoming se-
riously interested in this previously obscure and arcane sub-
ject, bolstered by new and exciting cryptologic advances
coupled with a brave new technological landscape in which
securing information was understood to be something that
would soon become a very important problem. Information
technology was getting inexorably faster, cheaper and bet-
ter, with the notable exception of security, which seemed
actually to get worse with every iteration of Moore’s law.
Cryptography, we believed (or hoped), could come to the
rescue, delivering its promise of securing information car-
ried over the increasingly insecure media of the Internet and
the “information superhighways” spoken about by visionar-
ies of the time. Cryptography, we increasingly sensed, would
soon no longer be merely the esoteric stuff of spies, armies,
and governments, but would become an integral part of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACSAC ’11 Dec. 5-9, 2011, Orlando, Florida USA

Copyright 2011 ACM 978-1-4503-0672-0/11/12 ...$10.00.

public information economy.

But there was a hitch.

Securing information, the government reminded us, can
be a double-edged sword. In the classic model for encrypted
communication, upstanding citizens Alice and Bob seek to
cryptographically protect their communication from Eve, an
evildoing eavesdropper. But in a world where transparent
cryptography is built in to every telephone, computer and
network node, giving the honest Alices and Bobs of the world
a mechanism to keep their secrets from Eve might also give
the less savory the ability to evade legal surveillance. In
other words, what if Eve is occasionally the good guy?

And so even before the Web became synonymous with
the Internet, before a single bit of encrypted SSL traffic was
generated, lines were being drawn for what would become
an epic battle that would preoccupy a generation of cryp-
tographers. (And it was a bad time for that community
to be preoccupied; this was the same time that the basic
foundations of the of web and other critical communications
technologies were designed and put into place. We've been
living with the security, or lack of security, built in to that
infrastructure ever since).

And the eavesdroppers had some leverage. While there
were no laws in the United States preventing Alice and Bob
from encrypting their communications as unbreakably as
they wanted, things weren’t so simple for the manufacturers
of the hardware and software they might need to effectively
do it. Encryption technology, it turned out, was classified
as a munition, regulated under the same laws that control
trafficking in rocket launchers and nuclear weapons. These
laws made it legal to manufacture and sell cryptographic
equipment and software domestically, but required a special
license from the State Department to export any product
that incorporated the technology to any foreign destination.
Even making free encryption software available for download
over the Internet required obtaining an arms control license.

Make strong encryption that we can’t break, the govern-
ment made clear, and you will never get a license to export
your product to the world market. Anyone violating these
rules could be prosecuted under the same laws that apply to
arms traffickers and smugglers. That stick was more than
large enough to discourage the industry from incorporating
strong encryption into their products and standards, even
as the need for it was increasingly recognized.

But in April, 1993, the government dangled a carrot next
to the arms control stick: strong encryption that could be
incorporated into products and that could still be freely ex-
ported. The system, called key escrow, aimed to provide a



%

L3

IMYKTBT§
1 22422
200605

-
-

- LY LT

y l'-; ‘
Jmuuuua

Figure 1: Mykotronx MYK-78T “Clipper” Escrowed
Encryption Chip (photo courtesy of the author)

Ak

strong cipher for public use with a “back door” that could
be exploited by law enforcement agents conducting a (pre-
sumably authorized) wiretap.

The centerpiece of the key escrow proposal was a tamper-
resistant hardware encryption module, called, in its initial
version, the Clipper Chip. Clipper was intended as a drop-
in replacement for a standard DES chip, but with a new
symmetric-key cipher algorithm, called Skipjack, designed
by the National Security Agency and using an 80 bit key.
But before any two Clipper chips could communicate, they
would first exchange a Law Enforcement Access Field (LEAF)
that contained a copy of the current session key, itself en-
crypted with an “escrowed” Unit Key held by the govern-
ment. Any Clipper-encrypted communication could thus be
decrypted by government agents without needing to break
the (presumably strong) Skipjack cipher. The agents would
be able to recover the session key simply by decrypting the
copy in the LEAF (which they would intercept along with
the ciphertext) using their escrowed copy of the unit key.
The system would, however, still be secure against unau-
thorized eavesdroppers, who presumably would lack access
to the government’s escrowed key database. Clipper chips
(and other escrowed encryption modules in the same fam-
ily) were to be manufactured, under a government license,
by Mykotronx and available for sale to vendors of computers
and other secure communications hardware; see Figure

It was, the policymakers must have thought, a perfect
solution.

2. BLOWING THE LEAF

Key escrow was not greeted by the technical community
with the unreserved warm reception for which the govern-
ment was perhaps hoping. Almost immediately, many objec-
tions were raised that questioned basic assumptions behind
the proposal. Why should the bad guys be expected to use
an encryption system that the government has announced in
advance it can decrypt? How will the key escrow database be
secured against unauthorized access? Why should industry
adopt expensive hardware encryption (as Clipper required)
just as software cryptography was becoming computation-
ally feasible? Why should anyone trust the Skipjack cipher,
an unpublished algorithm designed in secret by the NSA?
And would the system reliably even solve the problem it
aimed to address — ensuring government access to Clipper-

Figure 2: AT&T TSD-3600 Telephone Security De-
vice (photo courtesy of the author)

encrypted traffic?

The history of the 1990’s “crypto wars” has been well-
chronicled, and it is beyond the scope of this short paper
to address all the various problems, theoretical, practical,
and political, with key escrow as it was envisioned and as
it evolved. Instead, I will offer here a personal perspective,
focusing on one small battle at the beginning of this (blood-
less but still damaging) “war.” 1 am surely omitting many
important episodes, details, and contributors, for which I
apologize; what follows should be understood as a war story,
which is at best an idiosyncratic, personal, recollection.

2.1 The AT&T Connection

AT&T (my employer at the time) was the first (and ulti-
mately the only) company to produce a full product based
on the ill-fated escrow system, but that was not their orig-
inal plan. The AT&T TSD-3600D, announced in 1992, was
to be a voice encryption device that could be installed in
any standard wireline “POTS” telephone (between the phone
base and the handset). Calls placed to other TSD-3600D-
equipped telephones would be automatically digitized (at
4800bps) and encrypted using DES, making eavesdropping
on the conversation (by legal or illegal means) effectively
infeasible under the technology of the time. The devices
weren’t cheap, but were designed by the same AT&T busi-
ness unit that produced the STU-III secure telephone for
the government, from which it borrowed some of its design
and security features. Two communicating TSDs would first
perform a Diffie-Hellman key exchange (768 bit, in the first
version of the product) to establish a session key, a 4 char-
acter hash of which was displayed on each unit’s LCD. To
detect "man-in-the-middle” attacks, users could verify (by
voice over the encrypted session) that their displayed hashes
matched. See Figure[2]

When the US government learned of AT&T’s plans to
market the TSD, it worried that criminals might use the
devices to thwart wiretaps. Plans for a new escrowed en-
cryption system — with a wiretap backdoor — were hurriedly
drawn up by the NSA, and AT&T was persuaded to replace
the regular (non-escrowed) DES-based encryption scheme in
the original TSD product with one based on the new system,
which became known as the Clipper chip. In 1993, when
Clipper was announced, a new Clipper-based TSD, dubbed
the TSD-3600E, was announced at the same time. As in-
centive for AT&T’s cooperation, the government agreed to



purchase a significant quantity of Clipper-equipped TSD-
3600Es, which sold for over $1000 each. The original un-
escrowed DES-based TSD-3600D models were recalled by
AT&T and quickly disappeared from the market.

When key escrow — and AT&T’s involvement in it — was
made public, I was just starting my career as a cryptography
and security researcher in AT&T’s Bell Laboratories divi-
sion. My colleagues and I, like most members of the civilian
cryptography research community, learned about the escrow
scheme from the New York Times, and we were as skepti-
cal as anyone of the security and practicality of the govern-
ment’s plan. Working for a company that was so promi-
nently involved in what seemed like such a technically ill-
advised project was a bit uncomfortable, but it also had its
advantages. It was easier to get questions answered, to sort
out how this technology was supposed to work. There might
even be an opportunity to do some interesting research on
the subject. After some poking around, I managed to get
hold of a pair of first generation TSD-3600s, but this was less
useful than I had hoped, especially given how infrequently I
needed to have sensitive telephone conversations. The real
breakthrough came when a group from NSA visited the Labs
to brief us and answer our questions, which was especially
helpful given the dearth of solid publicly released informa-
tion on the technology. My colleague Steve Bellovin and I
both took notes.

As the NSA meeting was breaking up, we asked, half-
jokingly, if they’d mind if we posted a summary of what
they’d told us to Usenet. To my great surprise, they en-
thusiastically agreed (evidently they were as eager to get
details out as we were to learn them). Steve and I compared
notes, and a few days later we posted a short writeup to the
sci.crypt newsgroup.

In writing the summary, we were careful to stick to the
facts, avoiding needlessly inflammatory commentary on the
wisdom of key escrow or on whether the NSA should be
trusted. This must have come as something of a relief to the
NSA’s readers of sci.crypt, flooded as it was at the time
with relentless criticism of the Clipper program and of the
government’s intentions. A week later, the NSA invited me
to come down to their headquarters and R&D facility at F't.
Meade, MD.

To make a long story short, I ended up bringing home
samples of a next generation key escrow device. This was
a PCMCIA card, code-named Tesserﬂ intended for se-
cure PC email and other data encryption applications. The
Tessera card was based on a version of the key escrow chip,
called Capstone, that added some public key exchange and
digital signature features to its interface but was otherwise
similar to the Clipper chip in its functionality. The NSA
people asked only that I play with it and perhaps find in-
teresting applications. I asked if I'd be able to publish my
results, and, again to my surprise, they agreed.

2.2 Oracles and Rogues

As a research platform, the Tessera PCMCIA card of-
fered a significant advantage over the Clipper-based TSD-
3600 product: an open API with direct access to the encryp-
tion chip’s functional interface. I could simply connect the

! Tessera was an unfortunate name. It turned out to be
a registered trademark of a company that made PCMCIA
cards and that wanted nothing to do with key escrow. The
NSA eventually had to change the code name to Fortezza.

card to a reader on my computer and write software to send
data directly to and interrogate results directly from the
Capstone chip (which included all the functions of the Clip-
per chip). This would be a much easier way to experiment
with key escrow than the other alternative available to me,
which involved removing the Clipper chip from a TSD-3600,
reverse-engineering its pinout, and building and debugging
an interface to it for my computer. With the PCMCIA card,
all that was already done.

So I could get right to work. Which, of course, raised the
question, to work on what, exactly? What questions would
be interesting to ask about key escrow?

At the time, most of the questions and criticisms of the
government’s key escrow proposal were either political (“why
should we trust the government to hold our keys?”) or re-
quired access to classified information (“how does the Skip-
jack cipher work?”). But I decided to start with a question
that the hardware might be helpful in answering: how do
key escrow devices enforce the escrow features? That is,
how do they prevent someone from using the Skipjack ci-
pher without sending the data fields that enable a govern-
ment eavesdropper to recover the key?

I found that the system included a number of safeguards
to frustrate some of the most obvious ways to defeat the key
escrow field, called the LEAF (“Law Enforcement Access
Field”).

The details of the LEAF were classified. We knew it was a
128 bit structure containing enough information for law en-
forcement recovery of the session key with the cooperation
of the agencies holding the escrowed unit key database. We
were told that the LEAF package contained a 32 bit unique
unit identifier (the serial number of the chip that gener-
ated the LEAF), the current 80 bit session key (encrypted
with the device’s unit key) and a 16 bit LEAF checksum.
The entire structure was encrypted with a “family key” to
produce the final LEAF package. All cryptographic oper-
ations in LEAF creation were based on symmetric (secret)
key techniques using the Skipjack cipher and other (unspec-
ified) algorithms. The family key was global, shared by all
interoperable key escrow devices (but not published). The
Skipjack algorithm, the family key, the encryption modes
used to encrypt the unit key and the LEAF message, and
the details of the checksum algorithm were not made public
(and all were protected against reverse engineering by Clip-
per’s tamper-resistant hardwareﬂ Externally, the LEAF
was presented as an opaque 128 bit package.

To decrypt escrowed traffic, a law enforcement agency first
must intercept the LEAF and the traffic itself using some
sort of data wiretapping technology. The LEAF could then
be decrypted with the family key, revealing the chip serial
number, the unit key-encrypted session key and the LEAF
checksum. The target’s serial number would then be pro-
vided by the agents to two “key escrow agencies,” which
would each return a “share” of the escrowed unit key associ-
ated with the given serial number. The two unit key shares
would then be combined (by bitwise exclusive-or) to produce
the full unit key, which the law enforcement agency could
then use to decrypt the session key. This session key could
in turn decrypt the actual intercepted traffic.

2In 1998, after Clipper was abandoned, the NSA declassified
and published the Skipjack algorithm. I believe it was, and
remains, the only NSA-designed symmetric-key encryption
algorithm ever publicly released.



The key escrow system thus relied on the availability of
the LEAF along with the encrypted traffic. To force appli-
cations to send the LEAF on the same channel as the traffic,
key escrow devices would not decrypt data until they had
received a valid LEAF for the current session key. Presum-
ably, the chips on each end would perform various integrity
checks on received LEAFs prior to accepting them.

To provide a convenient application interface for LEAF
management, the devices generated and loaded LEAF's as
part of the process of generating and loading the initial-
ization vectors (IVs) for each cryptographic session. The
Clipper and Capstone chips provided generatel V and loadlV
functions that operated on 192 bit parameters instead of the
usual 64 bits. This “IV” parameter was actually a two part
structure containing the standard 64 bit IV concatenated
with the 128 bit encrypted LEAF. The loadlV operation
would fail if the LEAF did not pass an integrity check.

Most details of the LEAF creation method, encryption
modes, and data structures, beyond those mentioned above,
were classified and were therefore unknown to me. In partic-
ular, the key escrow standard did not specify the mechanism
that enforced the transmission of the correct LEAF as part
of the ciphertext stream. However, I was able to perform a
number of simple experiments on my Tessera card to con-
firm and expand what we knew about the LEAF’s internal
structure and the way it was used. I found:

e LEAF integrity was verified via redundancy in its in-
ternal checksum field. In general, attempts to load an
incorrect LEAF failed. This must have been due en-
tirely to the checksum field and not through direct ver-
ification of the unit ID or encrypted session key fields;
the receiving chip could not confirm the correctness of
those fields since it would have no way of knowing the
unit ID or unit key of its peer. Therefore, the LEAF
must have been testable based entirely on session in-
formation known to the receiver (such as the cleartext
session key and IV) and that must have been included
in the LEAF checksum computation.

e LEAF checksum computation included (implicitly or
explicitly) the current IV. The LEAF changed when-
ever a new IV was generated even when the session key
remained the same. Since the IV was not included di-
rectly as one of the LEAF fields, the only field it could
affect would be the LEAF checksum. Furthermore, re-
ceiving devices would refuse to load a LEAF with the
wrong IV.

e LEAF checksum computation must have included the
cleartext of the current session key. Attempting to
load an otherwise valid LEAF (and corresponding IV)
from a previous session key failed. It was therefore
not possible to “re-use” a LEAF generated from an old
session key, even though such a LEAF would itself be
internally consistent.

e The LEAF integrity check included every bit of the
LEAF. Attempts to load an otherwise valid LEAF with
a single bit inverted anywhere in the 128 bit structure
always failed.

e The LEAF encryption method diffused its input across
the entire 128 bit structure. The LEAF structure or

encryption mode was apparently not exactly as speci-
fied in publicly released documents. Generating a new
IV for a given session key caused changes across the
entire LEAF. Since the Skipjack cipherblock size was
64 bits, encryption of the LEAF would have to in-
volve at least two block encryption operations. Since
the IV affected only the checksum, and the checksum
appeared at the end of the LEAF structure in public
documents, we could conclude that at least one of the
following was true:

— The LEAF was encrypted with a non-standard
mode in which cleartext in “late” blocks affects
the early ciphertext.

— The LEAF was encrypted with a standard forward-
chaining or stream mode but the checksum ap-
pears in the first cipherblock of the LEAF.

— The LEAF was encrypted with a standard forward-
chaining or stream mode but the current session
IV was itself used to initialize it.

e The LEAF checksum was, in fact, 16 bits long. A
brute-force search of the LEAF space for a valid LEAF
required about 2*¢ operations.

That last point turned out to be interesting. It meant that
it was possible to use 2'® Clipper or Capstone chip opera-
tions as an “oracle” to generate apparently valid, acceptable
LEAFSs for the current IV and session key that would actu-
ally be useless for escrowed decryption.

So the safeguards that required transmission of a valid
LEAF weren’t very strong after all. With only access to the
chip’s standard interface, one could easily create a “rogue”
device that could happily interoperate with legitimate es-
crowed peers, enjoy the use of the strong Skipjack cipher,
but be impervious to the key escrow back door. The only
thing stopping you was a 16 bit exhaustive search, a very
low barrier even in 1993.

In April, 1994, I wrote a paper about all this, “Protocol
Failure in the Escrowed Encryption System”. I circulated it
to a few colleagues, and, not wanting to blindside anyone,
also sent a copy to my contacts at NSA. They were, I must
say, extremely good natured about it.

Eventually I submitted the paper to the upcoming 1994
ACM Computer and Communications Security Conference,
which would be held in November. But some time in May,
someone (I never found out who) sent a copy to John Markoff,
the technology reporter at the New York Times who had
broken the key escrow story the previous year. He called
me to tell me he was writing a story about my paper for his
paper, and wondered if I had any comment.

2.3 No Such Thing As Bad PR?

After the Times called, it occurred to me that I was in
what could be considered an uncomfortable position, an em-
ployee of the research division of the same company in whose
product I was finding flaws. And it was all based on a con-
troversial wiretapping system created by a secretive govern-
ment intelligence agency. And now the New York Times
was about to write about it. And there I was, right at the
center of the story. It seemed like a good time to involve
management.

I feared that the company might not be completely de-
lighted with my discoveries, or with my writing a paper



on the subject. And indeed, executives in parts of AT&T
couldn’t understand why some kid in the troublemaking,
out-of-control research lab would even think that it was a
good idea to publish such things. But the Bell Labs man-
agement shined. They actively defended the importance of
publishing and fully supported me as a member of the pub-
lic research community, no matter the effect it might have
on sales of the TSD or the company’s relationship with the
government. Our job as scientists, they argued, was to tell
the truth. I was never prouder to work there.

Eventually, Markoff called me to let me know that his
story would be running in the Times the next day. But when
I got my copy of the paper, I couldn’t find any mention of
it. It was only later that I noticed the story in the one place
I didn’t look: the top of the front page, under the headline
Flaw Found in Federal Plan for Wiretapping. Apparently
cryptography was bigger news than I thought. More likely,
it was a slow news day.

3. POSTSCRIPT

Clipper and key escrow eventually faded away. While my
paper may have helped accelerate its demise, key escrow
would not have been likely to succeed even if the Clipper
escrow mechanism had been more robust than it was.

Fundamental problems with the government’s vision for
key escrow made it inherently unworkable, regardless of the
implementation details. First, of course, was the problem of
securing a growing database of end-user keys, a very attrac-
tive target for unauthorized eavesdroppers who might seek
to intercept escrowed traffic themselves. Then there was the
economic problem: communications cryptography was, by
the 1990’s, becoming an essentially zero-marginal-cost tech-
nology, something that could often be implemented in soft-
ware more easily than by adding specialized hardware. But
Clipper required the use of hardware cryptography, taking
something that was becoming inherently cheap and turn-
ing it back into something expensive. The market would
ultimately never accept this, even if the trust issues and
technical problems could have been worked out.

Over the next few years there were attempts to revive
key escrow under various new proposed schemes (the name
eventually changed to “key recovery”). By the end of the
decade, however, the government gave up. The export rules
— the government’s main leverage in promoting key escrow
— were relaxed to allow mass-market products to use strong
cryptography without a special license, and eventually, cryp-
tography started to become integrated into more and more
products, software, and protocols. Key escrow was finally
dead.

It’s probably worth asking whether this was a good thing.
Law enforcement, after all, warned that unfettered access to
cryptography would make it easier for criminals, spies, and
terrorists to cover their tracks.

Fortunately, the worst fears of law enforcement haven’t
come to pass. Every year since the Nixon administration,
the federal government has issued a report on legal wire-
taps, giving the number of intercepts, the types of crimes
being investigated and other statistics. Since 2002, the re-
port has included another statistic: the number of cases in
which encryption encountered on a legal wiretap prevented
law enforcement from getting the evidence it was seeking.

With the increasing proliferation of eavesdrop-thwarting
encryption built in to our infrastructure since export laws

were relaxed a decade ago, we might expect law enforcement
wiretap rooms to have become quiet, lonely places.

But maybe not. The latest wiretap report identifies a total
of just six (out of 3194) cases last year in which encryption
was encountered, and this prevented recovery of evidence a
grand total of zero times.

What’s going on here? Shouldn’t all this encryption be
affecting government eavesdroppers at least a little bit more
than the wiretap report suggests? Do the police know some-
thing about cryptanalysis that the rest of us don’t, enabling
them to effortlessly decrypt criminal messages in real time
without batting an eye? Is AES (the federally-approved al-
gorithm that won an open international competition for a
new standard block cipher in 2001) part of an elaborate
conspiracy to lull us into a sense of complacency while en-
abling the government to secretly spy on us? Perhaps, but
the likely truth is far less exciting, and ultimately, probably
more comforting.

The answer is that faced with encryption, capable investi-
gators in federal and local law enforcement have done what
they have always done when new technology comes around:
they’ve adapted their methods in order to get their work
done. Widespread encryption, rather than shutting down
police wiretaps, has actually pushed them in a more reliable
— and accountable — direction.

This is because while traffic encryption is highly effective
at preventing wholesale, un-targeted interception, it does re-
markably little to prevent targeted government eavesdrop-
ping in the complex architectures of modern computing and
communication technologies. Yes, today’s encryption algo-
rithms are believed to be effectively secure in practice, in
the sense that they make it infeasible for even an adversary
with the resources of a government to obtain cleartext from
ciphertext without access to the key. But government eaves-
droppers doesn’t have to limit themselves to that scenario
for their wiretap targets. They can instead exploit the real-
ity that the cleartext (or the keys to decrypt it) for almost all
encrypted traffic today is typically available, somewhere, on
a general-purpose computer that is exposed to government
access, either explicitly or through surreptitious means. And
as systems become more sophisticated and incorporate more
features, the exposure of cleartext and keys to third party
access tends to increase correspondingly. All without Clip-
per chips or any other kind of key escrow systems, mandated
or not.

If only we had understood that in 1993. We could have
saved ourselves a quite a bit of trouble, and maybe spent a
bit more time actually making things more secure.



	Carrots, Sticks & Encryption
	Blowing the LEAF
	The AT&T Connection
	Oracles and Rogues
	No Such Thing As Bad PR?

	Postscript

